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Abstract

The random waypoint model (RWP) is one of the most widely used mobility models in per-
formance analysis of mobile wireless networks. In this paper we extend the previous work by
deriving an analytical formula for the stationary distribution of a node moving according to a
RWP model inn-dimensional space.
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1 Introduction

Random waypoint model (RWP) is one of the most widely used mobility models in performance
analysis of wireless ad hoc networks. In the traditional RWP model inR

2, the path of the node
is defined by a sequence of random waypoints,P1, P2, . . . , placed randomly using a uniform
distribution in some convex domainD ⊂ R

2. At time t = 0 the node is placed at some point
P0 ∈ D, either randomly using, e.g., uniform distribution or at some fixed starting point. Then the
node moves at constant speedv along a line towards the next waypointP1. Once the node reaches
waypointP1 it takes a new heading towards the next waypointP2 etc. Each line segment between
two waypoints is referred to as a leg and its length is denoted by`. For further details and possible
extensions of the model we refer to [1].

The RWP model was originally proposed in [2] and has since then been used, e.g. in capacity
and connectivity studies [3, 4, 5, 6]. The knowledge of the stationary node distribution is often
needed for determining a performance quantity of interest. The stationary node distribution in
RWP model (in plane) has been studied, e.g., in [7, 8, 9, 10] and an explicit formula forR

2 was
derived in [1]. In this paper we extend our earlier work in [1] by deriving an analytical formula for
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Figure 1: The integral in Eq. (3) is equal to∆ times the volume with darker shade.

stationary distribution of a node moving according to a RWP model in ann-dimensional convex
set. The three-dimensional RWP process serves as an elementary model for, e.g. mobile users in
an office building or a shopping center.

2 Spatial Node Distribution in R
3

For clarity, we first consider the natural extension of RWP model to the three-dimensional space
and then generalize the results to ann-dimensional space.

Let V denote the volume of the convex domainD ⊂ R
3, ` the length of an arbitrary leg and̀

the mean length of a leg. Furthermore, letf(r) denote the pdf of the node location atr. Similarly
as in [1], we start by considering a differential volume elementdV atr (see Fig. 1), and infer,

f(r) =
1

`
· E [` ∩ dV ]

dV
, (1)

E [` ∩ dV ] =
1

V

∫
D

E [` ∩ dV |r1] d3r1. (2)

Let a1 = a1(r, Ω) denote the distance fromr to the boundary of the domain in a given direction
Ω anda2 the distance fromr to the boundary in the opposite direction. Relying on Fig. 1 we have
dV = ∆ · da andda/dA = r2/(r + a1)

2.
Consequently,

E [` ∩ dV |r1] =
1

V

∫
D
|`(r1, r2) ∩ dV | d3r2

=
1

3V
∆ · ((r + a1) · dA − r · da)

=
∆

3V
·
(

(r + a1)
3 − r3

r2

)
da =

dV

3V
· (r + a1)

3 − r3

r2
. (3)

Substituting Eqs. (2) and (3) back into Eq. (1) yields,

f(r) =
1

3`V 2

∫
D

(r + a1)
3 − r3

r2
d3r1

=
1

3`V 2

∫
Ω

dΩ

∫ a2

0

dr
(
(r + a1)

3 − r3
)
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Figure 2: Spherical Coordinates.
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Figure 3: Due to symmetry in a unit sphere one
can consider points(0, 0, r) for whicha1 anda2

are a function ofr andθ.

=
1

12`V 2

∫
Ω

dΩ
(
(a1 + a2)

4 − (a4
1 + a4

2)
)
.

More specifically, using spherical coordinates we get (see Fig. 2)

f(r) =
1

6`V 2

∫ π

0
dθ sin θ

∫ π

0
dφ H(r, θ, φ). (4)

whereH(r, θ, φ) = (a1 + a2)
4−(a4

1 + a4
2).

3 Spatial Node Distribution in R
n

The same procedure can be generalized ton dimensions. The “volume” of ann-dimensional cone
is

Vn(h) =
h · A

n
,

whereh is the height andA corresponds to the “area” of the base. LetD ⊂ R
n be a convex set

with volumeV . Then it is easy to see that the stationary distribution of the RWP process inD is
given by

f(r) =
1

n`V 2

∫
D

(r + a1)
n − rn

rn−1
dnr,

which can be expressed as

f(r) =
1

n(n + 1)V 2`

∫
Ω

dΩ H(r,Ω). (5)

where
H(r, Ω) = (a1 + a2)

n+1 − (an+1
1 + an+1

2 ).
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Figure 4: Stationary node distribution of the RWP process in the unit sphere. Each section repre-
sents a probability mass of0.2.

The mean length of leg̀is obtained from the normalization condition
∫

f(r) dnr = 1,

` =
1

n(n + 1)V 2

∫
D

dnr
∫

Ω
dΩ H(r,Ω). (6)

4 Examples

Example 1: RWP model in plane: Forn = 2 the general expression (5) yields

f(r) =
1

6`V 2

∫ 2π

0

(a1 + a2)
3 − (a3

1 + a3
2) dθ

=
1

`V 2

∫ π

0

a1a2(a1 + a2) dθ,

which is identical to the equation derived in [1].
Example 2: Unit sphere inR3: Due to the symmetry, the pdf is a function of distancer = |r|
only and without loss of generality we can consider the pointr = (0, 0, r). From Fig. 3 one
immediately obtains that

a1(r, θ) =
√

1 − r2 sin2 θ − r · cos θ,

a2(r, θ) =
√

1 − r2 sin2 θ + r · cos θ.
(7)

Using the3-dimensional expression (4) we get

f(r) =
3

16π · `
∫ π

0

h(r,θ)︷ ︸︸ ︷
sin θ · a1a2(2a2

1+3a1a2+2a2
2) dθ.

Writing
h(r, θ) = (1 − r2)(7 − 3r2 + 4r2 cos 2θ) sin θ
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Figure 5: Pdf of the node location in the unit box at different “slices” ofx1.

and

h(r) =

∫ π

0

h(r, θ) dθ =
2

3

(
21 − 34r2 + 13r4

)
we get ∫ 1

0

4πr2 · h(r) dr =
192π

35
.

Thus the mean length of leg̀and the pdf of the node location atr are

` =
36

35
≈ 1.029,

f(r) =
35

288π
· (21 − 34r2 + 13r4

)
.

In the spherically symmetric case, the pdf of the random variabler, denoted byfd(r), is fd(r) =
4πr2f(r),

fd(r) =
35

72
· r2

(
21 − 34r2 + 13r4

)
.

The cumulative pdf for the unit sphere is illustrated in Fig. 4, where each section represents a
probability mass of0.2.
Example 3: Unit box inR3: The next example is the unit box in3-dimensional space. The pdf
of the node location can be evaluated numerically using Eq. (4). In Fig. 5 the pdf is depicted
for different values of thex1-coordinate. Fig. 6 illustrates the marginal distribution of the node
location (solid line) and the pdf of the node location in one-dimensional RWP (dashed line). It
can be noted that the difference in pdfs is almost neglible.
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Figure 6: Marginal pdf of the node location in the unit box (solid line) compared with the pdf of
the node location in1-dimensional RWP process (dashed line).
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Example 4: Unit hypersphere inRn: The area and volume of then-dimensional unit hypersphere
are [11]

An =
2πn/2

Γ(n/2)
, and Vn =

πn/2

Γ(n/2 + 1)
.

Again, due to the symmetry, the pdf is a function of distancer = |r| only and we can arbitrarily
take r = (0, . . . , 0, r). Eq. (7) holds still withθ being the angle betweenr and thexn-axis.
Differential surface area of the hypersphere betweenθ andθ + dθ is An−1 sinn−2 θ dθ. Hence, we
have

f(r) =
An−1

n(n + 1)V 2
n · ` · h(r),

where

h(r) =
∫ π

0
sinn−2 θ · H(r, θ) dθ,

H(r, θ) =
(
(a1 + a2)n+1−(an+1

1 + an+1
2 )

)
.

In Fig. 7 the pdf of the node location atr, f(r), and the pdf of the distancer from the origin,
fd(r), are depicted for dimensionsn = 2, 3, 4, 5. The maximum value of the pdff(r) attained
at the center of the hypersphere increases as the dimensionn increases. Furthermore, from the
Fig. 7(b) it can be noted that as the dimensions increase the probability mass of the random vari-
abler shifts towards the surface,r = 1. Finally, the mean length of leg given by Eq. (6) can be
written for the unit hypersphere as

`n =
An−1An

n(n + 1)V 2
n

∫ 1

0

rn−1h(r) dr.

Forn = 1, . . . , 5 we have explicitly

`1 = 2/3 ≈ 0.667, `4 = 16384/4725π ≈ 1.104,

`2 = 128/45π ≈ 0.905, `5 = 800/693 ≈ 1.154.

`3 = 36/35 ≈ 1.029,
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Figure 7: Pdf of the node location (left) and distance from the origin (right) in ann-dimensional
unit hypersphere,n = 2, 3, 4, 5.
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