TCP performance analysis through processor sharing modeling

Pasi Lassila^{a,b}, Hans van den Berg^{a,c},

Michel Mandjes $^{\mathrm{a},\mathrm{d}},$ and Rob Kooij $^{\mathrm{c}}$

^a Faculty of Mathematical Sciences, University of Twente
 ^b Networking Laboratory, Helsinki University of Technology
 ^c KPN Research, the Netherlands

^d CWI, the Netherlands

Outline

- Motivation
- Existing models: flow level vs. packet level
- Our approach: combined flow-packet level model
- Numerical results
- Conclusions

Motivation

- Most Internet traffic carried by TCP
 - Elastic traffic: tolerates variations in throughput
 - Packet losses used as indications of congestion
 - If no packet losses, TCP increases its sending rate
 - For each packet loss, rate is (typically) halved
- Main performance measures: throughput and delay
- For practical purposes, simple yet accurate enough models are needed

Scenario

- Requests arrive randomly and files have random lengths
- Issues: packet losses and RTT delays
- Bottleneck: access link, network, server link

- Assume limitation is due to access or one bottleneck link

• What is the mean file transfer delay?

Flow level models

- Generalized Processor Sharing, GPS (Cohen, 1975)
 - Poisson file requests at rate λ
 - File lengths i.i.d. with mean $1/\mu$ (insensitivity)
 - $-r_n =$ joint sending rate given n flows
 - Each flow gets r_n/n

GPS steady state distribution

• First define

$$\phi(n) := \begin{cases} \lambda \cdot (\mu r_n)^{-1} & \text{for } n \in \mathbb{N} \\ 1 & \text{for } n = 0 \end{cases}, \quad \psi(n) := \prod_{i=0}^n \phi(i)$$

• Then $\mathbb{P}(N=n)$ equals

$$\mathbb{P}(N=n) = \frac{\psi(n)}{\sum_{m=0}^{\infty} \psi(m)}$$

• Observations

- Letting $C \to \infty$, we obtain the infinite server Erlang system
- Choosing $r_n = C$ we obtain the traditional PS-system with geometric distribution (each flow gets its fair share C/n)
- Choosing $r_n = \min(rn, C)$ models case where sources have max rate r. Poisson-type left tail and geometric right tail.
- Mean delay (Little): $E[D] = E[N]/\lambda$

GPS properties

• Features:

- Insensitivity to file size distribution
- Conditional mean delay linear in file size
- Idealizations:
 - Assumes instantaneous rate adaptation (new flow gets its fair share immediately)
 - Does not take into account packet losses (assumes infinite buffers)
 - Does not take into account RTT delays
 - Gives too optimistic results

TCP modeling

- Assumption n persistent flows
- The "square-root"-formula for TCP throughput (single flow)

$$t \approx \min\left\{r, \frac{\Gamma}{\mathrm{RTT}\sqrt{p}}\right\}$$

- Iterative approach to determine t_n and p
 - Given n flows, t_n is the total arrival rate from these
 - Assume that at packet level arrivals are Poisson. Packets enter an M/D/1/K queue, where they observe a loss rate $p(t_n) \Rightarrow$ fixed point

$$t_n = \min\left\{nr, \frac{n\Gamma}{\operatorname{RTT}}\frac{1}{\sqrt{p(t_n)}}\right\},$$

• Features: captures losses and RTT delays, but no flow level dynamics

Combined flow-packet level model (1)

- Idea: Couple previous two models together
- Procedure:
 - Using the TCP equation, we can determine conditional sending rates t_n , given n flows
 - The goodput at the packet level equals $t_n(1 p(t_n))$
 - On the flow level, the system is assumed to behave as a GPS system with rates $r_n = t_n(1 p(t_n))$
- Other improvements (hacks?)
 - Effect of queuing delay: replace RTT by RTT + $\bar{q}(t_n)$
 - Initial slow start effect: compute the number of unsent packets due to slow start and compensate mean delay with the time to send them at average rate

Combined flow-packet level model (2)

- Applicability? (method completely heuristic)
 - TCP throughput equations are approximate and generally assume low loss rates (<10%)
 - Time scale decomposition: new flow obtains its fair share
 quickly (compared to the mean file transfer time)
 - Effect of RTT only seen when RTT relatively large
 - Poisson packet arrival assumption probably never valid, but how bad is it?
- Simulations
 - Done by using ns2 (2.1b8a)
 - C = 10 Mbps, flength 1000 pkts (constant), psize 1500B
 - $\text{RTT} = \{40, 200, 400\} \text{ ms}, K = \{10, 50\}, r = \{1, 2\} \text{ Mbps}$

Numerical results (mean delay, small buffer)

$$r = 1$$
 Mbps, $K = 10$, RTT = {40, 200, 400} ms

Numerical results (distribution, small buffer)

$$r = 1$$
 Mbps, $K = 10$, RTT = 200 ms, $\rho = \{0.7, 0.8, 0.9\}$

Numerical results (mean delay, big buffer)

Buffer size K = 50, RTT = {40, 200, 400} ms

Numerical results (larger access rate)

$$r = 2$$
 Mbps, $K = \{10, 50\}$, RTT = $\{40, 400\}$ ms

Numerical results (insensitivity)

$$r = 1$$
 Mbps, $K = \{10, 50\}$, RTT = $\{40, 400\}$ ms

Conclusions and future work

- An extension of the traditional GPS model
 - + Captures qualitatively the effect of RTT and finite buffers on delay
 - Quantitatively, the parameters can be chosen to give good/bad correspondence with simulations
- Future work
 - Generalization to networks of GPS queues (multiple congested links)
 - Poisson assumption does not really work at packet level, a better packet level model is needed