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Motivation

e Most Internet traflic carried by TCP

— Elastic traffic: tolerates variations in throughput
— Packet losses used as indications of congestion
— If no packet losses, TCP increases its sending rate

— For each packet loss, rate is (typically) halved

e Main performance measures: throughput and delay

e For practical purposes, simple yet accurate enough

models are needed



Scenario
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e Requests arrive randomly and files have random lengths

e [ssues: packet losses and RT'T delays
e DBottleneck: access link, network, server link

— Assume limitation is due to access or one bottleneck link

e What is the mean file transfer delay?



Flow level models
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e Generalized Processor Sharing, GPS (Cohen,1975)

— Poisson file requests at rate
— File lengths i.i.d. with mean 1/p (insensitivity)
— 1, = joint sending rate given n flows

— Each flow gets r,,/n



GPS steady state distribution

e [irst define
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e Then P(N = n) equals

Y(n)
Zifzo P(m)

P(N =n) =

e Observations

— Letting C' — oo, we obtain the infinite server Erlang system

— Choosing r, = C we obtain the traditional PS-system with

geometric distribution (each flow gets its fair share C'/n)

— Choosing r,, = min(rn, C') models case where sources have

max rate r. Poisson-type left tail and geometric right tail.

e Mean delay (Little): E[D] = E[N]/A



GPS properties

e Features:

— Insensitivity to file size distribution
— Conditional mean delay linear in file size
e [dcalizations:
— Assumes instantaneous rate adaptation (new flow gets its

fair share immediately)

— Does not take into account packet losses (assumes infinite

buffers)
— Does not take into account RTT delays

— Gives too optimistic results



TCP modeling

e Assumption n persistent flows

e The "square-root”-formula for TCP throughput (single flow)

I’
t &~ mi
min {fr‘, RTT\/E}

e [terative approach to determine ¢,, and p

— Given n flows, t,, is the total arrival rate from these

— Assume that at packet level arrivals are Poisson. Packets
enter an M/D/1/K queue, where they observe a loss rate

p(t,) = fixed point

/ : nl’ 1
, = min < nr, :
RTT vV D (tn)
e Features: captures losses and RT'T delays, but no flow level

dynamics



Combined flow-packet level model (1)

e Idea: Couple previous two models together
e Procedure:
— Using the TCP equation, we can determine conditional send-
ing rates t,, given n flows
— The goodput at the packet level equals ¢, (1 — p(t,))
— On the flow level, the system is assumed to behave as a GPS
system with rates r, = t,,(1 — p(t,))

e Other improvements (hacks?)

— Effect of queuing delay: replace RTT by RTT + ¢(¢,)

— Initial slow start effect: compute the number of unsent pack-
ets due to slow start and compensate mean delay with the

time to send them at average rate
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Combined flow-packet level model (2)

e Applicability? (method completely heuristic)
— TCP throughput equations are approximate and generally
assume low loss rates (< 10%)

— Time scale decomposition: new flow obtains its fair share

quickly (compared to the mean file transfer time)

— Effect of RT'T only seen when RT'T relatively large

— Poisson packet arrival assumption probably never valid, but
how bad is it?

e Simulations

— Done by using ns2 (2.1b8a)
— C =10 Mbps, flength 1000 pkts (constant), psize 15008
— RTT={40,200,400} ms, K = {10,50}, = {1,2} Mbps
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mean transfer delay

Numerical results (mean delay, small buffer)

r =1 Mbps, K = 10, RTT = {40,200, 400} ms

K=10, RTT=40 ms
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P{N=n}

Numerical results (distribution, small buffer)

r =1 Mbps, K = 10, RTT = 200 ms, p = {0.7,0.8,0.9}
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mean transfer delay

Numerical results (mean delay, big buffer)

Buffer

size K = 50, RTT = {40, 200, 400}

K=50, RTT=40 ms

ms

K=50, RTT=200 ms
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Numerical results (larger access rate)

P =2 Mips, K = (10,50}, RTT = 40,400} ms

access bw = 2 Mbps, K = 10
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Numerical results (insensitivity)

P = 1 Mips, K = (10,50}, RTT = 40,400} ms

buffer size K = 10
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Conclusions and future work

e An extension of the traditional GPS model

+ Captures qualitatively the effect of RT'T and finite buffers
on delay
- Quantitatively, the parameters can be chosen to give good /bad
correspondence with simulations
e Future work
— Generalization to networks of GPS queues (multiple con-
gested links)

— Poisson assumption does not really work at packet level, a

better packet level model is needed
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