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Background

• Traffic matrix gives the traffic demand between each
origin-destination pair in the network

• Knowledge of traffic matrices is important in capacity planning,
network management, pricing, traffic engineering.

• However, Traffic matrices are usually not directly available in IP
networks

• What is available:

– Link load measurements y (from SNMP data),

– routing tables A
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Techniques to Estimate the Traffic Matrix

• Direct measurement

– Cisco Netflow

– MPLS

• Gravitation model

• Linear programming (avg. error: 170%)

• Network tomography (10-25%)

• Bayesian inference (20-45%)
→ Average errors from Medina et al. ”Traffic matrix estimation: Existing techniques and new
directions” 2002.
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Gravitation model

• Traffic volume x between an OD-pair ij is proportional to:

→ Oi, total traffic originating from node i

→ Tj , total traffic terminating at node j

→ Some distance function fij

xij =
OiTj

fij

• Used to obtain prior distributions as starting points for other
algorithms.
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Network Tomography

Ax = y

Where y is the vector of link count measurements, A is routing
matrix, and x is the traffic matrix written as a column vector

• Since there are n OD pairs and significantly smaller number m of
links, the problem is highly under-constrained for solving the
traffic matrix x

→ Many solutions for x yield the measured link counts y.

→ Given a prior distribution some solutions are more probable than
others.

January 7, 2004 Ilmari Juva, Networking Laboratory Slide 5



IRoNet Results Seminar - Traffic Matrix Estimation

Bayesian Inference

• Computes conditional probability distribution for OD-pair traffic
demands, given the link counts and prior distribution.

p(x,Λ) = p(Λ)
n∏

a=1

λa

xa!
e−λa

• Mean rates Λ = λ1, ..., λn are unknown

• Analytical computations for Posterior distribution are difficult

→ Markov Chain Monte Carlo simulation for posterior distribution
p(x,Λ|y)
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Iterative Bayesian estimation

• Vaton, Gravey 2002
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Conditional normal distribution

• Traffic matrix x is a multivariate gaussian variable X with mean µ

and covariance matrix Σ.

x ∼ N(µ,Σ)

y ∼ N(Aµ,AΣAT)

(1)

f(x) ∼ exp(−1
2
(x− µ)TΣ−1 (x− µ)). (2)

• We have a prior distribution with estimates (m,C) for parameters
(µ,Σ). And let use the notation B = C−1

• y1,y2, . . . ,yD are the link load measurements.
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• Say we have n OD pairs and m links.

→ Routing matrix A has n columns and m rows

→ x is an n-vector, y is an m-vector

• Make the partition

A = ( A1 A2 ) x = (x1 x2 )

so that A1 is m×m matrix, A2 is m× (n−m) and x1,x2 are
m-vector and (n−m)-vector respectively.

• Now we can write

Ax = A1x1 + A2x2 = y

x1 = A−1
1 (y −A2 x2) (3)

→ We can substitute this expression for x1 in f(x).
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• Making the partition and substitution, the exponent of f(x)
becomes

xT
2 (AT

2 (A−1
1 )

T
B11A

−1
1 A2 −AT

2 (A−1
1 )

T
B12 −B21A

−1
1 A2 + B22)x2

+xT
2 ((B21 −AT

2 (A−1
1 )

T
B11)(A−1

1 y −m1) + (AT
2 (A−1

1 )
T
B12 −B22)m2)

+(transpose)x2 + constant. (4)

• This can be written as complete square of the form

(x2 − m̃2)TC̃
−1

22 (x2 − m̃2) + constant (5)

= xT
2 C̃

−1

22 x2 − (xT
2 C̃

−1

22 m̃2 + (transpose)x2) + constant (6)

• From which we can pick out terms C̃−1
22 and C̃−1

22 m̃2 and solve for m̃
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• For each measurement yi we obtain m̃ using prior estimates
(m,C) and routing matrix A.

m̃ = Gy + Hm (7)

(8)

G =

(
A−1

1 + A−1
1 A2C̃22(B21 −AT

2 (A−1
1 )

T
B11)A−1

1

−C̃22(B21 −AT
2 (A−1

1 )
T

B11)A−1
1

)

H =

(
−A−1

1 A2C̃22(B21 −AT
2 (A−1

1 )
T

B11) A−1
1 A2C̃22(AT

2 (A−1
1 )

T
B12 −B22)

C̃22(B21 −AT
2 (A−1

1 )
T

B11) −C̃22(AT
2 (A−1

1 )
T

B12 −B22)

)
C̃22 = (AT

2 (A−1
1 )

T
B11A−1

1 A2 + AT
2 (A

−1
1 )

T
B12 + B21A−1

1 A2 + B22)−1

Where C̃22 is the part of the conditional covariance matrix C̃ that
corresponds to x2.

• The new estimate for m is the sample mean of the m̃
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Example

A =

(
1 0 1

0 1 1

)
(9)

A1 =

(
1 0

0 1

)
A2 =

(
1

1

)
(10)

x1 =

(
xAB

xBC

)
x2 = xAC (11)
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y = Ax ⇔
y1 = xAB + xAC

y2 = xBC + xAC

x1 = A−1
1 (y −A2 x2)

xAB = y1 − xAC

xBC = y2 − xAC

mi+1 = Gy + Hm

=


y1 −

c−2
1

c−2
1 +c−2

2 +c−2
3

y1 −
c−2
2

c−2
1 +c−2

2 +c−2
3

y2

y2 −
c−2
1

c−2
1 +c−2

2 +c−2
3

y1 −
c−2
2

c−2
1 +c−2

2 +c−2
3

y2

c−2
1

c−2
1 +c−2

2 +c−2
3

y1 +
c−2
2

c−2
1 +c−2

2 +c−2
3

y2

 (12)

+ C̃22

 c−2
1 m1 + c−2

2 m2 − c−2
3 m3

c−2
1 m1 + c−2

2 m2 − c−2
3 m3

−c−2
1 m1 − c−2

2 m2 + c−2
3 m3

 (13)
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y1 ∼ N(10, 2) y2 ∼ N(11, 2) (14)

For example:

µ =

 4
5
6

 Σ =

 1 0 0
0 1 0
0 0 1


prior 1.iteration 2.iteration

m

 5
4
3

  5
6
5

  5
6
5


C

 4 0 0
0 4 0
0 0 4

  2 1 −1
1 2 −1
−1 −1 2

  1 0 0
0 1 0
0 0 1


• How good is this solution?
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Thank You for your attention.
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