
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jegadish.D 1

Assignment 1: tcpbridge

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jegadish.D 2

”Host A” a bridge ”Host B”

The assignment is to create a program that forwards the
data from the bridge port (a) to other host's port (b). The
target host's address details and port numbers to be used
are specified as command line options. The bridge also
listens for connections on port c and echoes all the traffic
transmitted between port a and port b to clients connected
on port c
There could be more than one client connected to port c.

Logical connection

a b

c

spies

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

tcpbridge

 Listens for TCP connection request on a specified port (a)
 When the client connects, the program starts receiving data from the

connected client and makes a connection to host B, with which the
traffic would be exchanged. The bridge also has to start listening on
another port(c) for incoming connection request.

 The data tranmitted between the client on port ‘a‘ and the host on port
port ‘b ‘ is forwarded to all clients connected on the port c

 Short and hex form can be used for logging the data transmitted trought
the bridge

 Terminating the program with Ctrl-C (SIGINT) will cause it to dump a
summary on the number of bytes received so far.

 The program need to run for a specified time period.

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

tcpbridge -i <port-no> -o <port-no> -s -l <dumplen> -d <dest> -t <duration>

-i: Open a listening socket for incoming TCP connection. The program
needs to receive data from the client that connects to this port.

-o: Open a listening socket for incoming TCP connection. Every client that
connects to this TCP port number will receive a copy of the output, until
it disconnects.
(Note: The format of the output need to be decided as,
-s -> short form of output
-l -> hex dump format
If both -s and -l are not specified, then transfer the output, without any
formatting)

-h: the destination hostname where the connection has to be “forwarded”
-d: the destination IP address where the connection has to be “forwarded”
-s: (Short form) Creates a single line of output for the data read

 (<80 characters), containing a timestamp with microsecond resolution,
source and destination IP address and port number and the number of
bytes read or received.

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

tcpbridge contd…
-l: Turns on the the hex dump and sets the hex output length to the specified

number of bytes per send operation. Append the short form output before
the hex dump. So that we could read the address and port information of
the machines that exchange data.

-t: This option is used to specify a duration that the program shall run for.
After this time is elapsed the program shall terminate automatically. The
time interval shall be specified (as an integer) in seconds. A summary
information on the number of bytes exchanged between either side, need to
be printed to the stdout.

Examples:
tcpbridge -i 5000 -o 5050 -h abcd.hut.fi:6000 -l 400 -t 200
tcpbridge -i 5000 -o 5050 -h abcd.hut.fi:6000 -s -t 200
tcpbridge -i 5000 -o 5050 -d 130.233.11.11:6000 -l 400 -t 200
tcpbridge -i 5000 -o 5050 -d 130.233.11.11:6000 -s -t 200

The assignment requirements expect support for IPv4 addressing.
Optional: Would be nice, if support can be provided for IPv6 too.

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

tester_utility
 A Utility would be provided to aid in the develpment and testing of

the tcpbridge. A binary compiled under unix gcc would be
provided.

 Note: The test program could be used make few test connections
to specified addresses, but they are not used for testing the
complete tcpbridge implementation.

 The utility operates in two modes
send mode: It makes a TCP connection to a specified address
and once a connection is established, it starts sending some data.
receive mode: It makes a TCP connection to a specified address
and once a connection is established, it starts receiving the data
and dumps it to the stdout, if specifed (command line)

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Test utility usage
 -s: To run the program in send mode
 -r: To run the program in receive mode
 -i: IP Address to which the connection need to be made
 -h: HOST Name to which the connection need to be made
 -p: Port Number to which the connection need to be made
 -n: Number of packets to be sent- one packet is sent per second
 (Used only by the sender mode)
 (Here – packet means some junk of data with no header)
 -d: Duration - The time for which the receiver has to receive data
 (Used only by the receiver mode)
 -l: Length - The length of the message to be printed
 (Used only by the receiver mode and for non binary data
 Note: Do not use '-l' if data that is to be received is binary)

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Hints (1)
 Accepting a TCP connection

 Use listening socket socket (SOCK_STREAM, AF_INET, …)
 accept () incoming connections for spies

 If there is more than one connected to spy the exchages, then, distribute the short form or
hex dump form of output data to all of them

 A select() READ event and a subsequent recv() result of “0” or “-1” indicate
that the spy is gone.
 Try this out, this varies between different operating systems
 Close the socket locally
 If none are left, revert to dumping to the screen

 For this assignment, use all sockets in blocking mode (default setting)
 Using non-blocking i/o will make things far too complicated and cause extra headache
 But would, nevertheless, be the right thing to do in practice

 Test with telnet(1)
 telnet 127.0.0.1 50000 if your process listens on port #50000
 you could also use the test utility for testing the listening ports

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Hints (2)
 Time handling

 gettimeofday yields detailed system clock reading as (sec, usec) pair
 In the mainloop, determine the time to wait based upon the current time

 This result is what you feed into poll() or select()
 Note that both use completely different time formats

 If select() returns 0, a timeout has occurred
 Single line format, e.g.:
 (when 's' switch is enabled use this format to represent the output)

14:09:00.123456 134.102.218.59:40000 -> 134.102.218.58:47000 79 Bytes
 Remember again network vs. host byte order

 Sample hex dump (when 'l' switch is used)
 Offset Individual bytes in hexadecimal Characters (*)
 --------- --- --------------------
 000000: 00 01 02 00 41 42 43 09 00 64 00 00 00 00 30 39 ABC..d....09
 000010: 00 00 0a 0d

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Hints (3)

 Do not use signals for timing

 Such as done by alarm(). This may just cause system call interruptions that
you do not want or need

 Signals
 Need to catch at least SIGINT: signal (SIGINT, signalhandler);

 This may occur at any point in time, so you may want to postpone processing to the main
loop (probably not needed in our simple example)

 In this case, you would just set a global variable and return (terminate = 1;)
 Need to check the variable regularly even if no data arrive

 Will cause interrupted system calls (errno == EINTR)
 Need to check for this also in your main loop and behave accordingly

 Short note on hexdumps()
 printf (“%02x”, variable) prints the contents as 2 hex digits with leading zero
 Exception: if the the highest bit is “1”, then leading “ffffff” may appear.
 Solution: use (variable & 0x0ff) for printing (you care about 8 bits only)

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Hints (4)
/* command line processing goes here */
if ((s = socket (AF_INET, SOCK_STREAM, 0)) == -1) {

perror ("cannot create socket");
exit (-1);

}
listen_addr.sin_family = AF_INET;
listen_addr.sin_addr.s_addr = INADDR_ANY;
listen_addr.sin_port = htons (listen_port);
if (bind (s, (struct sockaddr *) &listen_addr,
 sizeof (listen_addr)) == -1) {

 perror ("cannot bind to address");
 exit (-1);

}
i_addrlen = sizeof (i_addr);
if (listen (s, 3) == -1) {

perror ("listen failed");
exit (-1);

}

© 2006 Jegadish.D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Hints (5)
fd_set working_set, base_set;
FD_SET(sd, &base_set);
while(1)
{ copy the base to working set...

rc_select = select (sd + 1, &working_set, NULL, NULL, &select_timeout);
/* Check to see if the select call failed. */
if (rc_select < 0) {
 perror("select() failed");
 check error status and act accordingly
}
/* Check to see if the 'n' minute time out expired. */
if (rc_select == 0) {
 fprintf(stderr, "\n select() timed out. \n");
 return -1;
}
/* Check to see if there is a incoming connection request */
if (FD_ISSET(sd, &working_set))
{....act based on the set descriptor

