1. a) How much information is in transit ("on wire") on a 1000 km long transmission cable if the transmission speed is a) $10 \mathrm{Mb} / \mathrm{s}$ b) $155 \mathrm{Mb} / \mathrm{s}$ ? Use $2 * 10^{8} \mathrm{~m} / \mathrm{s}$ as the propagation speed of the transmitted signal.
b) How long is the transmission time of one ATM cell on a transmission line operating at $155 \mathrm{Mb} / \mathrm{s}$ ?
c) How long does it take to fill the payload of one ATM cell from a source with transmission speed of $64 \mathrm{kbit} / \mathrm{s}$ ?
2. Information is transferred in fixed size ( $N$ bit) packets either as datagrams or using virtual connections. In the first case one needs $n_{d}$ bits for the address. In the latter case the length of the VCI field is $n_{c}\left(<n_{d}\right)$ bits. In addition the set up of the connection takes a time equal to that of transmitting $D$ bits. When is the transmission of an $M$ bit long message faster using a virtual connection than using a datagram?
3. a) Error frequency is related to the size of the ATM cell. Assuming that the bit error rate (BER) is $p$, each cell has $N$ bits and that the errors in consecutive bits are statistically independent, show that the cell error rate (CER) is CER $=1-(1-p)^{N} \approx N p$.
b) Assume that retransmission is done each time when there is an error in the cell. In this case, for each correctly received cell one has to send $(1-\mathrm{CER})^{-1}$ cells on the average. Assuming that each cell has $n$ bits overhead independent of the cell size, show that the average number of bits sent per one correctly received bit is $(N+n) /\left(N(1-p)^{N+n}\right)$. What is the minimizing optimal cell size of the given expression if $\mathrm{n}=40$ ( 5 bytes) and a) $p=10^{-9}$ or b) $p=10^{-3}$ ?
4. In a part of an ATM network there are four successive nodes A, B, C, D. The following permanent virtual paths (VPC connections) have been set up: A-B-C-D, A-B-C, B-CD. Route A-B-C-D has eight virtual channel connections (VCC): two of them do not use any of the virtual paths above (i.e. they consist of separate node-per-node VPC connections); on the other hand there are two VCC connections in each permanent VPC. Give a possible set of VPI/VCI identifiers on each link for each VPC and VCC connection (change the identifiers whenever it is possible).
