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ABSTRACT 

An encounter-based network is a frequently-disconnected wireless 

ad-hoc network requiring nearby neighbors to store and forward 

data utilizing mobility and encounters over time. Using traditional 

approaches such as gateways or firewalls for deterring worm 

propagation in encounter-based networks is inappropriate. We 

propose models for the worm interaction approach that relies 

upon automated beneficial worm generation to alleviate problems 

of worm propagation in such networks. We study and analyze the 

impact of key mobile node characteristics including node 

cooperation, immunization, on-off behavior on the worm 

propagations and interactions. We validate our proposed model 

using extensive simulations. We also find that, in addition to 

immunization, cooperation can reduce the level of worm 

infection. Furthermore, on-off behavior linearly impacts only 

timing aspect but not the overall infection. Using realistic mobile 

network measurements, we find that encounters are non-uniform, 

the trends are consistent with the model but the magnitudes are 

drastically different. Immunization seems to be the most effective 

in such scenarios. These findings provide insight that we hope 

would aid to develop counter-worm protocols in future encounter-

based networks. 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 

Security and Protection 

General Terms 
Performance, Security 

Keywords 
Worms, Encounter-based Worms, Delay-tolerant Networks. 

1. INTRODUCTION 
An encounter-based network is a frequently-disconnected wireless 

ad-hoc networks requiring close proximity of neighbors, i.e., 

encounter, to disseminate information. Hence, we call this the 

“encounter-based network” which can be considered as a 

terrestrial delay-and-disruptive-tolerant network. It is an emerging 

technology that is suitable for applications in highly dynamic 

wireless networks.  

Most previous work on worm propagation has focused on 

modeling single worm type in well-connected wired network. 

However, many new worms are targeting wireless mobile phones. 

Unlike random scan network worms, which are limited by 

network bandwidth or link delay, worms in mobile networks are 

limited by encounter patterns influenced by node characteristics 

which we focus in this paper. 

Many of those worms rely on Bluetooth to broadcast their 

replications to vulnerable phones, e.g., Cabir and ComWar.M 

[12]. Since Bluetooth radios have very short range around 10-100 

meters, the worms need neighbors in close proximity to spread out 

their replications.  Hence, we call this “encounter-based worms”. 

This worm spreading pattern is very similar to spread of packet 

replications in delay tolerant networks [14, 16, 18], i.e., flooding 

the copies of messages to all close neighbors. An earlier study in 

encounter-based networks actually used the term “epidemic 

routing” [14] to describe the similarity of this routing protocol to 

disease spreading.  

Using traditional approaches such as gateways or firewalls for 

deterring worm propagation in encounter-based networks is 

inappropriate. Because this type of network is highly dynamic and 

has no specific boundary, a fully distributed counter-worm 

mechanism is needed. We propose to investigate the worm 

interaction approach that relies upon automated beneficial worm 

generation [1]. This approach uses an automatic generated 

beneficial worm to terminate malicious worms and patch 

vulnerable hosts.   

Our work is motivated by wars of Internet worms such as the war 

between NetSky, Bagle and MyDoom [12]. This scenario is 

described as “worm interactions” in which one or multiple type of 

worm terminates or patches other types of worms. In [10, 11], we 

have classified worm interaction types. However, this is the first 

study on the effect of fundamental characteristics of mobile node 

behavior on encounter-based worm propagations.  

There are many important node characteristics to be considered, 

but we focus only a fundamental subset including node 

cooperation, immunization and on-off behavior. We shall show 

that these are key node characteristics for worm propagation in 

encounter-based networks. Other characteristics such as trust 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

CHANTS’07, September 14, 2007, Montreal, Quebec, Canada. 

Copyright 2007 ACM  978-1-59593-737-7/07/0009…$5.00. 



between users, battery life, energy consumption, and buffer 

capacity are subject to further study and are out of scope of this 

paper.  

The majority of routing studies in encounter-based networks 

usually assume ideal node characteristics including full node 

cooperation and always-on behavior. However, in realistic 

scenarios, nodes do not always cooperate with others and may be 

off most of the time [20]. In worm propagation studies, many 

works also assume all nodes to be susceptible (i.e., not immune) 

to worm infection. An immune node does not cooperate with 

infected hosts and is not infected. To investigate more realistic 

scenarios, we propose to study the mobile node characteristics and 

analyze the impact of node cooperation, immunization and on-off 

behavior on the worm interactions. Cooperation and on-off 

behavior are expected to have impact on the timing of infection. 

Intuitively, cooperation makes the network more susceptible to 

worm attacks. Immunization, however, may help reduce overall 

infection level. This paper examines the validity of these 

expectations, using the overall infection level and timing of 

infection as metrics (see Section 3.3). 

Most worm propagation studies only focus on instantaneous 

number of infected hosts as a metric. We feel that additional 

systematic metrics are needed to study worm response 

mechanisms. We utilize new metrics including total infectives, 

maximum infectives, total lifespan, average lifespan, time-to-

infect-all, and time-to-remove-all to quantify the effectiveness of 

worm interaction. 

In this paper, we try to answer following questions: How can we 

model this war of the worms systemically based on node 

characteristics including cooperation, immunization, and on-off 

behavior in encounter-based networks? What conditions of node 

characteristics can alleviate the level of worm infection?  This 

worm interaction model can be extended to support more 

complicated current and future worm interactions in encounter-

based networks. Due to limited space, we only model node 

characteristics on aggressive one-sided worm interactions [10] in 

which there are two types of worms; beneficial worm and 

malicious worm. The beneficial worm acts as a predator and can 

terminate the malicious worm (in this case, the prey!). The 

predator vaccinates and patches infected hosts and susceptible 

hosts to prevent infection and re-infections from malicious worm. 

Our main contribution in this paper is our proposed new Worm 

Interaction Model focusing on node characteristics in encounter-

based networks. We also use new metrics to quantify the 

effectiveness of worm interactions, and are applicable to study any 

worm response mechanism. We also provide the first study of 

worm propagation based on real mobile measurements. 

Following is an outline of the rest of the paper. We discuss related 

work in Section 2. Then, in Section 3, we explain the basic worm 

interaction model, node-characteristics model, and proposed 

metrics. Then we analyze worm interactions in both uniform and 

realistic encounter networks. In Section 4, we conclude our work 

and discuss the future work. 

2. RELATED WORK 
Worm-like message propagation or epidemic routing has been 

studied for delay tolerant network applications [14, 16, 18]. As in 

worm propagation, a sender in this routing protocol spreads 

messages to all nodes in close proximity, and those nodes 

repeatedly spread the copies of messages until the messages reach 

a destination, similarly to generic flooding but without producing 

redundant messages. Performance modeling for epidemic routing 

in delay tolerant networks [16] based on ODEs is proposed to 

evaluate the delivery delay, loss probability and power 

consumption. Also the concept of anti-packet is proposed to stop 

unnecessary overhead from forwarding extra packets copies after 

the destination has received the packets. This can be considered as 

a special case of non-zero delay of aggressive one-sided 

interaction which we consider in our model. 

Epidemic models, a set of ordinary differential equations, were 

used to describe the contagious disease spread including SI, SIS, 

SIR SIRS, SEIR and SEIRS models [2, 6, 13] in which S, I, E, R 

stand for Susceptible, Infected, Exposed and Recovered states, 

respectively. There’s an analogy between computer worm 

infection and disease spread in that both depend on node’s state 

and encounter pattern. For Internet worms, several worm 

propagation models have been investigated in earlier work [3, 7, 

17]. Few works [1, 8, 10, 11] consider worm interaction among 

different worm types. Our work, by contrast, focuses on 

understanding of how we can systemically categorize and model 

worm propagation based on node characteristics in encounter-

based networks.  

In [1], the authors suggest modifying existing worms such as 

Code Red, Slammer and Blaster to terminate the original worm 

types. The modified code retains portion of the attacking method 

so it would choose and attack the same set of susceptible hosts. In 

this paper, we model this as aggressive one-sided worm 

interaction. Other active defenses, such as automatic patching, are 

also investigated in [15]. Their work assumes a patch server and 

overlay network architecture for Internet defense. We provide a 

mathematical model that can explain the behavior of 

automatically-generated beneficial worm and automatic patch 

distribution using one-sided worm interaction in encounter-based 

networks. Our work aims to understand and evaluate automated 

worm (with patch) generation but we do not address details of 

vulnerabilities nor related software engineering techniques to 

generate patches or worms. Active defense using beneficial worms 

is also mathematically modeled in [8] which focused on delay-

limited worm defense in the Internet. 

Effect of Immunization on Internet worms was modeled in [7] 

based on the SIR model. 

3. WORM INTERACTION MODEL AND 

METRICS 
Worm interaction arises in scenario where one worm terminates 

other worms. To understand worm interaction, we start by 

examining the concept of the predator-prey relationships in 

Section 3.1. Then, in Section 3.2, we introduce the basic concept 

of worm interaction model and finally we propose new metrics in 

Section 3.3. In Section 3.4, we provide basic worm interaction 

model analysis. Then we introduce concept of node characteristics 

and node-characteristic-based worm interaction model in Section 

3.5. Then, in Section 3.6, we analyze and compare simulation 

results between uniform and non-uniform (trace-based) worm 

interactions. 



3.1 Predator-Prey Relationships 
For every worm interaction type, there are two basic characters: 

Predator and Prey. The Predator, in our case the beneficial worm, 

is a worm that terminates and patches against another worm. The 

Prey, in our case the malicious worm, is a worm that is terminated 

or patched by another worm.  

A predator can also be a prey at the same time for some other type 

of worm. Predator can vaccinate a susceptible host, i.e., infect the 

susceptible host (vaccinated hosts become predator-infected hosts 

or predator infectives) and apply a patch afterwards to prevent the 

hosts from prey infection. Manual vaccination, however, is 

performed by a user or an administrator by applying patches to 

susceptible hosts. 

A termination refers to the removal of prey from infected hosts by 

predator; and such action causes prey infectives to become 

predator infectives. The removal by a user or an administrator, 

however, is referred to as manual removal. For brevity and clarity, 

manual vaccination and removal are not considered in this paper. 

We choose to use two generic types of interacting worms, A and 

B, as our basis throughout the paper. A and B can assume the role 

of predator or prey depending on the type of interactions.   

3.2 Worm Interaction Model 
Let S be the number of vulnerable hosts that are not yet infected 

by any worm, i.e. susceptible at time t.  Let AI and BI be the 

number of infected hosts by prey and predator at time t, 

respectively. Assume that each user encounters another random 

user with constant pair-wise contact rate β (probability per unit 

of time of encounter between any pair) and uniform encounter 

(every node has equal chance to encounter any other node)1. We 

also assume that node’s characteristic including cooperation, 

immunization and on-off behavior does not change after infection 

from prey or predator. We start with the simple case where every 

node is cooperative, susceptible and always on.  The state 

transition diagram in Fig.1 and the susceptible rate and infection 

rates of prey and predator are given by: 

)( BA IIS
dt

dS
+−= β                        (1-a) 

)( BA
A ISI

dt

dI
−= β                        (1-b) 

)( BAB
B IISI

dt

dI
+= β .            (1-c) 
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Figure 1. Aggressive one-sided interaction  

                                                                 

1 This assumption is relaxed later in the paper in the trace-based 

encounter simulations. 

We call this set of equations “aggressive one-sided interaction 

model” where a predator is able to terminate its prey and 

vaccinate susceptible hosts. We shall vary this model later to 

capture various node characteristics. 

3.3 Metrics 
To gain insight and better quantify the effectiveness of aggressive 

one-sided worm interaction, we propose to use the following 

metrics:  

3.3.1 Total Infectives (TI): the number of hosts ever 
infected by prey 

3.3.2 Maximum Infectives (MI): the peak of instantaneous 
number of prey-infected hosts where TIMII A ≤≤)0( .  

3.3.3 Total Life Span (TL): the sum of time of individual 
nodes ever infected by prey. It can be interpreted as the total 

damage by prey. 

3.3.4 Average Individual Life Span (AL): the average 
life span of individual prey-infected hosts where TLAL ≤ . 

3.3.5 Time to Infect All (TA): the time required for 
predator to infect all susceptible and prey hosts. Its inverse can 

be interpreted as average predator infection rate. 

3.3.6 Time to Remove All (TR): the time required for 
predator to terminate all preys where TATR ≤ . Its inverse can be 

interpreted as prey termination rate. 

Our goal is to find the conditions to minimize these metrics based 

on node characteristics. We discuss details of node characteristics 

in Section 3.5. 

Next we examine the basic worm interaction model and its 

relationships with above metrics. 

3.4 Basic Model Analysis 

If we want to suppress the initial infection (
dt

dI A =0 at t=0), from 

(1-b), then the required condition for this is 

BI (0) = S (0)               (2) 

where BI (0) and S (0) are the number of prey-infected hosts and 

susceptible hosts at t=0 respectively. 

We obtain from this condition that  

T I = MI = )0(AI , )(∞AI = 0        (3) 

where  )(∞AI is the number of prey-infected hosts at t=∞ . 

However, we can see from (2) that the threshold can only be 

obtained by requiring the initial number of predator to be at least 

equal to number of susceptible hosts (a trivial condition). If that 

condition cannot be met, i.e., )0()0( SI B < , then we can only have 

certain acceptable level of infection and TI can be derived from 

∫
∞

=

=

0t

AdtSITI β                                    (4) 

         Susceptible                    Infected with                     Infected with 

                                                 Worm A, Prey                Worm B, Predator,              

                                                                                     Immune to Worm A 



MI can be found where 
dt

dI A =0 at t > 0, in which  

BI (t) = S (t)                 (5) 

Let Y be the initial infected host ratio which is a ratio of predator 

initial infected hosts to prey initial infected hosts, i.e.,
)0(

)0(

A

B

I

I
Y =  

where )0(0 SNY −<< and N is the total number of nodes in the 

network.  

In Fig. 2, 3 and 4, we show the metrics characteristics based on Y 

and validate our models through the encounter-level simulations. 

We simulate and model 1,000 mobile nodes with β = 6x10-6    

sec-1, 1)0( =AI , and 998),0(1 ≤≤ SI B . Each simulation runs at 

least 1,000 rounds and we plot the mean values for each Y.  

We assume uniform and constant β  as well as )0(AI . We adjust 

Y to find the optimal range to minimize our proposed metrics 

where Ymin = 1 and Ymax = 998. 

In Fig.2, we show the relationships of TI and MI as the function of 

Y.  TI and MI decrease exponentially as Y increases. The reason 

we still keep )0(AI  small is to have wider range of Y with the 

same size of N. MI (as a fraction of N) is more accurately 

predicted by the model. The ratio of TI to MI is constant but it 

gets smaller towards the largest Y. We also find that if 

)0(:)0(:)0( AB IIS  is constant then NMI : and NTI : are also 

constant even N changes. 
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Figure 2. Relationships of TI and MI with Y  

 

Because TL is the accumulated life of individual prey until the last 

prey has been removed by predator whose duration indicated by 

TR. we can simply derive TL based on the numerical solutions 

from (1-b) as follows: 

tITL

ot

tA
∆=∑

∞

=

                                     (6) 

Since AL is the average life span for each node that has been 

terminated by predator which is equal to the number of nodes that 

are ever infected, AL can be derived from 

TI

TL

dtSI

TL

dtII

TL
AL

t

A

t

BA

===

∫∫
∞

=

∞

= 00

ββ

               (7) 

TL and AL trends are mostly accurately predicted by the model. 

The AL errors are due to the errors of estimated TL. 
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Figure 3. Relationships of TL and AL with Y 

From Fig.3, TL decreases exponentially as Y increases. AL, on the 

other hand, is almost constant for all Y. It is interesting to see that 

TL and AL are merging at their minimum when Y = Ymax. As we 

can see that TLmin and ALmin do not reach zero at Ymax because the 

next encounter time of a prey-infected host with any of predator-

infected host ( )0(BI ) requires average of β)0(
1

BI
. 

Furthermore, from (7), TLmin = TIminALmin, thus TLmin and ALmin 

merge to each other because TImin = )0(AI  = 1. 
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Figure 4. Relationships of TA and TR with Y 

From the observation in Fig.4, TR reduces much faster than TA 

with the increase of Y. TR decreases exponentially as Y increases. 

TA starts to be reduced rapidly when Y ≈  Ymax. At Ymax, we can see 

that TAmin=TRmin=ALmin, 

Note that TA is also similar to the average time for every node to 

receive a copy of a message from a random source in an 

encounter-based network which can be derived as 

βNN /)5772.0ln2( +  [18].  

3.5 Node Characteristics 
Earlier we assume that all nodes are fully cooperative, susceptible 

to both prey and predator and “always-on” in Section B., and 

hence each encounter guarantees a successful message (worm) 

transfer.  

AISp *β BAIIpβ

BISp *β

BISp 'β

 

Figure 5. Aggressive one-sided interaction with node 

characteristics 



In this section, we investigate the scenarios that do not follow 

above assumptions regarding these three important node 

characteristics. We assume these characteristics are consistent 

through out its life time of the networks. 

3.5.1 Cooperation 
Cooperation is the willingness of node to forward the message 

(worm) for other nodes. The opposite characteristic is known as 

selfishness. Intuitively, cooperation may seem to make the 

network more vulnerable. However, unlike immunization, 

cooperation is expected to equally slow down both prey and 

predator propagations. Hence, the effect of cooperation is hard to 

anticipate. 

3.5.2 Immunization 
Not all nodes are susceptible to the prey either because of their 

heterogeneous operating systems and their differences of 

promptness to remove the vulnerability from their machines. 

Hence partial of nodes can be immune to prey and will slow down 

the overall prey infection. It is expected to improve the overall 

targeted metrics that we mention earlier. Because even some 

nodes are immune to the prey but they still help forwarding the 

predator to other nodes and it is expected to have no positive 

impact on AL, TA but reduce TL and TR simply because of less 

number of nodes to be removed. 

3.5.3 On-off behavior 
A node is able to accept or forward the packet based on the on-off 

characteristics. In reality, devices are “on” or active only a 

fraction of the time. Activity may be related to mobility. For 

instance, a mobile phone is usually on, while lap top is unlikely to 

be mobile while on2. We model the transition from on to off, and 

vice versa, probabilistically. The probability is determined at the 

beginning of each time interval. Hence the contact rate is expected 

to be proportionally reduced according to the probability that the 

node cannot forward or accept the packets because of on-off 

status.  

Let c be the fraction of N that are willing to be cooperative 

where 10 ≤≤ c and N is the total number of nodes in the 

networks. Let i be the fraction of cooperative nodes that are 

immune to prey where 10 ≤≤ i . We assume that initial predator 

and prey infected hosts are cooperative then the number of 

susceptible hosts for both prey and predator is S* 

where )0()1()0(* AINicS −−=  and number of susceptible 

hosts for predator only is S’, where )0()0(' BIciNS −= . Note 

that BA IISSN +++= '*  and '* SSS += . We define the 

probability of “on” behavior as p and “off” behavior as 1-p 

where 10 ≤≤ p . Hence contact rate for both predator and prey 

is βp .  

Based on these definitions, the node-characteristic-based 

aggressive one-sided model can be shown as follows: 

)(*
*

BA IISp
dt

dS
+−= β                      (8-a) 

                                                                 

2 This is observed from measurements [19, 20] and is captured in 

our study using trace-driven simulations. 

BISp
dt

dS
'

'
β−=                             (8-b) 

)*( BA
A ISIp

dt

dI
−= β                         (8-c) 

))'*(( BAB
B IIISSp

dt

dI
++= β               (8-d) 

Similarly to Section 3.4, we use this model to derive metrics that 

we are interested. The differences between the conditions of this 

model and that of basic model to minimize the metrics are 

investigated here. 

If we want to suppress the prey initial infection, then we need 

)0(*)0( SI B =                               (9) 

Assume small )0(AI  and )0(BI  when compared with N, 

hence )0()1()0(* SicS −≈ ; required )0(BI  to stop prey initial 

infection is therefore also reduced approximately by the factor 

of )1( ic − when compared with (2). TI, similarly derived to (4), is 

               ∫
∞

=

=

0

*

t

AdtISpTI β                            (10) 

As contact rate is changed due to on-off behavior, TA 

which 1=Y , can be derived as follows: 

TA= βpNN /)5772.0ln2( +                (11) 

Our model can also be used to model node-characteristic-based 

one-worm-type propagation which equivalent to epidemic routing 

by assigning either 0)0( =BI or 0)0( =AI  in (8-a) to (8-d). 

3.6 Simulation Results 
In this section, we start by validating our models with uniform-

encounter simulation. Then, we compare the relationships of node 

characteristic with our proposed metrics in uniform and non-

uniform (trace-based) encounter networks. 

3.6.1 Uniform Encounters 
We use encounter-level simulations to simulate uniform encounter 

of 1,000 mobile nodes with β  = 6x10-6 sec-1, and 1)0()0( == BA II . 

Each simulation runs 10,000 rounds and we plot the median 

values for each i. The lag time between predator and prey initial 

infection is 0 sec. We vary cooperation (c) from 20% to 100%, 

immunization (i) from 0% to 90% with 100% “on” time for the 

first part of experiments (Fig. 6(a)-(f)) and we vary “on” time 

from 10% to 90% with 90% cooperation and 10% immunization, 

for the second part (Fig.6(g)-(h)). The first part aims to analyze 

the impact of cooperation and immunization on worm interaction 

whereas the second part aims to analyze the on-off behavior.  

From Fig. 6 (a)-(f) we find that increase of cooperation, 

surprisingly, reduces malicious worm infection for all the metrics. 

(Note that increase of cooperation actually increases absolute TI 

and absolute MI, but relative TI (or TI/ *N ) and relative MI (or 

MI/ *N ) are reduced where number of cooperative-susceptible 

nodes NicN )1(* −= ). 



 Similarly, for immunization Fig. 6 (a)-(f) shows that 

immunization reduces all categories of metrics except AL. With 

the increase of immunization, TI is reduced much faster than TL, 

thus increase of immunization increases AL. Furthermore, 

increase of immunization, as expected, reduces TR because of less 

number of possible prey-infected hosts. 

Cooperation reduces AL and TR significantly than it does to other 

metrics. Immunization, however, reduces relative TI, relative MI 

and TL more significantly than it does other metrics. With equal 

increase (20% to 80%), immunization at cooperation = 100% 

reduces relative TI, relative MI and TL approximately 8.8 times, 

2.7 times, and 10.6 times ,respectively, more than cooperation 

does at immunization = 0%. On the other hand, cooperation 

reduces TR approximately 3.3 times more than immunization 

does. As shown in Fig. 6(e), unlike immunization, only 

cooperation can reduce TA. 

The impact of on-off behavior (p) is clear in Fig. 6 (g) and (h). As 

expected, with variant of “on” time, there is no difference in 

relative TI and relative MI. The ratio of contact rate between 

predator and prey is an indicator of the fraction of infected hosts 

irrespective of the contact rate. In this case, the ratio of contact 

rate is always 1.0, and hence the constant of relative TI and 

relative MI. [11]. 

TL, AL TA and TR exponentially decrease with the increase of 

“on” time causing reduction of inter-encounter time. Our model 

shows a good agreement with simulation results for most of the 

scenarios based on node characteristics. 

3.6.2 Non-uniform Encounters 
We investigate the consistency of the model-based results with 

those generated using measurement-based real encounters. We 

drive our encounter-level simulations using the wireless network 

traces of the University of Southern California of 62 days in 

spring 2006 semester [20]. We define an encounter as two nodes 

sharing the same access point at the same time. We randomly 

choose 1,000 random nodes from 5,000 most active nodes based 

on their online time from the trace. Their median β is 1.2x10-6 

sec-1and median number of unique encounter node is 94. We use 

)0(AI =1 and )(tIB =1 where t is the delay between initial 

predator-infected host and initial prey-infected host in the 

simulation. This delay was introduced as the traced delay between 

the two groups in which one group for initial predator-infected 

host and another for initial prey-infected-host. Each group 

accounts for 3% of total population. The first group has average 

contact rate β =2.7x10-6 sec-1, and the second group has average 

contact rate β =3.6x10-6 sec-1. When contact rate of the initial 

predator-infected host is higher than that of the initial prey-

infected host, we call this scenario “Fast predator”. On the other 

hand, when contact rate of initial predator-infected host is lower 

than that of prey, we call this scenario “Slow predator”. From the 

trace, the median arrival delay between initial predator-infected 

host and initial prey-infected host is -539,795 sec (6.25 days) for 

“Fast predator”, and 539,795 sec for “Slow predator”. For 

comparison between uniform and non-uniform encounter, we 

directly add the plot of metrics from encounter-level simulation of 

worm interaction in uniform encounter networks with the same 

contact rate ( β =1.2x10-6 sec-1) and the same number of nodes 

with arrival delay = 0 sec.  

In Fig. 7, we find that immunization (i) is still a very important 

factor to reduce relative TI, relative MI, TL, and TR.  However, 

unlike uniform-encounter worm interaction, we find that higher 

cooperation does not necessarily help reduce relative TI, relative 

MI, TL, AL and TR.  

We believe that because of non-uniform encounter patterns (as 

shown in Fig. 7(a)-(b)) and significant lag time between an initial 

prey-infected host and an initial predator-infected host, there are 

several differences of the metrics with uniform and non-uniform 

encounter networks. The main reasons of non-uniform contact 

rate and non-uniform number of unique contact users are non-

uniform on-off behavior and location preferences. From [20], 

there were heavy and light users based on their online time, we 

know that only 50% of users were online more than 20% of the 

whole semester. In Fig. 7(a)-(b), we find that user’s encounter in 

the trace is highly skewed, i.e., top 20% of user’s total encounter 

account for 72% of all users’ encounter and 70% of users 

encounter less than 20% of total unique users. 

Hence, the metrics of worm interaction in non-uniform encounter 

networks in Fig. 7 deviate greatly from the results from that of 

uniform encounter networks. In Fig. 7(c)-(d), relative TI and 

relative MI with “Slow predator” is much worse than that of 

uniform encounter networks. On the other hand, the significant 

improvement of relative TI and relative MI are shown with “Fast 

predator”.  In Fig. 7(e), TL with “Fast predator” is almost two 

orders of magnitude lower than TL with “Slow predator” but still 

much higher than TL of uniform encounter networks. However, as 

shown in Fig. 7(e)-(f), AL with “Fast predator” has not shown 

significant differences than AL with “Slow predator”.  

4. SUMMARY AND FUTURE WORKS 
In this paper, we propose a node-characteristics-based model and 

metrics as a performance evaluation framework for worm 

interactions in encounter-based networks, with focus on 

cooperation, immunization, and "on-off" behavior. We find that in 

uniform encounter networks, immunization is the most influential 

characteristics for total infectives, maximum infectives and total 

life span. Cooperation and on-off behaviors greatly affect average 

individual life span, time-to-infect-all and time-to-remove-all. Our 

model also shows a very good agreement with uniform-encounter 

simulation results. 

Based on realistic mobile networks measurements, we find that 

the contact rate and the number of unique encounters of users are 

not uniform. This causes worm infection behavior to deviate 

significantly from that of uniform encounter networks, even 

though the general trends remain similar to the model. 

In addition, the level of infection is now determined by the 

contact rate of the initial predator and prey-infected hosts. A 

higher contact rate of initial predator (than prey) infected hosts 

significantly reduces the total infectives and maximum infectives 

when compared to those of the opposite scenario. In such 

networks, immunization seems to be more important factor than 

cooperation. Hence, enforcing early immunization and having 

mechanism to find a high-contact-rate node to use as an initial 

predator-infected host is critical to contain worm propagation in 



encounter-based networks. We believe that node-characteristics 

model for uniform encounter networks can be extended with delay 

and cluster behavior to explain effect of node characteristics on 

worm interaction in non-uniform encounter networks of the 

future. 
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Figure 6. Effects of cooperation (c), immunization (i) and on-off behavior (p) on uniform-encounter worm interactions 
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Figure 7. Trace-based statistics and simulation results:  histograms of  (a) total encounter/node and (b) 

unique encounter/node, and effects on cooperation (c), immunization (i) and on-off behavior (p) on (c)TI 

and MI (d) TL and AL and (e) TR  in non-uniform-encounter worm interaction (U: Uniform, NU: Non-

uniform, *: contact rate of initial prey is higher, **: contact rate of initial predator is higher) 
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